Vehicle-to-grid can be used with gridable vehicles, that is, plug-in electric vehicles (BEV and PHEV), with grid capacity. Since at any given time 95 percent of cars are parked, the batteries in electric vehicles could be used to let electricity flow from the car to the electric distribution network and back. This represents an estimated value to the utilities of up to $4,000 per year per car.
Batteries have a finite number of charging cycles, as well as a shelf-life, therefore using vehicles as grid storage can impact battery longevity. Studies that cycle batteries two or more times per day have shown large decreases in capacity and greatly shortened life. However, battery capacity is a complex function of factors such as battery chemistry, charging and discharging rate, temperature, state of charge and age. Most studies with slower discharge rates show only a few percent of additional degradation while one study has suggested that improved longevity relative to vehicles that were not used for grid storage may be possible.
Sometimes the modulation of charging of a fleet of electric vehicles by an aggregator to offer services to the grid but without actual electrical flow from the vehicles to the grid is called unidirectional V2G, as opposed to the bidirectional V2G that is generally discussed in this article. The company AC Propulsion coined the term V2G for vehicle-to-grid.
There are three versions of the V2G
- A combustion vehicle (hybrid or propelled only by fuel), which generates energy from stored fuel, using its generator to produce energy when there is a very large need for electricity.
- A vehicle with a battery or hybrid that uses its excess energy by giving it to the network at times of maximum need. These vehicles can be recharged during less-needed hours at cheaper rates, helping to absorb power generation at night.
- A solar vehicle that uses its excess energy to give it to the network. Such systems have been used since the 1990s and are routinely used in the case of large vehicles, such as rockets.
It also distinguishes V2G system according to the direction of flow into two types: one-way transmission capability of the vehicles (unidirectional) and the two-way transmission capability of the vehicles (bidirectional).
Operation and Details
The idea was u. a. by Willet Kempton and his team at the University of Delaware. Studies show that out of the millions of cars in the developed world, about 95% of the total useful life can not be moved and therefore could be used as storage if they had correspondingly high capacity accumulators and feed back into the grids via the charging stations it is possible. Charged cheaply in times of weak demand, they would support the network at peak load times as quickly available buffers. Such a concept offers a significant basis for further expansion, in particular for wind energy, which fluctuates greatly in terms of its power output. On September 21, 2009, the state of Delaware, the first state in the world, passed legislation that would provide electric vehicle owners with compensation for the energy they fed back based on the time-of-day electricity tariff. This allows the vehicle owner with the necessary bidirectional electricity meter for the first time practically act as a power trader by charging his batteries with a favorable night current and this discharges to consumption peaks again. Also, the German Wind Energy Association in Germany calls for the expansion of V2G in support of wind energy.
Vehicle-to-grid approaches are based on the fact that most vehicles are parked most of the day. For example, most private vehicles in Germany are moved less than 2 hours a day, making most of the day available for V2G applications. Since the charging time is usually much lower than the actual service life, the charging time of the batteries can be adapted to the respective requirements in the power grid and the electric cars are thus used for load management. Assuming that 70% of vehicles have a battery size of 20 kWhand the battery is 50% charged, one million electric cars could provide 7 GWh of additional storage capacity. Even if all vehicles were connected to the grid in a single phase via normal household power sockets of 3 kW, a control power of 2.1 GW would be available. However, if 90% of all cars in Germany were converted to electric vehicles as described above, they could store 277 GWh of electrical energy and provide 83 GW of balancing energy, which is higher than the total German peak load, However, as of 2018, the return of electricity to the grid is expensive, so it is currently appropriate to limit load management primarily to flexible charging and, in exceptional cases, to actually feed energy back into the grid.
In these considerations, it should not be forgotten that most of the vehicle batteries have a cycle-dependent life. For an effective and efficient functioning of the V2G concept, the vehicle owner has to give the network operator central control over the loading and unloading processes. In this case, the operation V2G affects the warranty conditions of the manufacturer, because V2G shuts down the life of the battery.
Technically speaking, "Vehicle to Grid" requires an electric car charging situation IEC 61851-1 "Mode 4" - fast charging by an external charger (bidirectional DC direct access of the charging station to the battery of the electric vehicle).
Solutions in which a homeowner with solar system uses the battery of his electric car as a power storage, have already been implemented in Germany. Also, Nissan provides under the name e8energy DIVA in such a system.
The Mitsubishi i-MiEV masters the bi-directional charging, so as to provide the battery of the car as power storage for about a house. As of 2018 which should also Peugeot iOn can.
Load curve alignment
The concept of the V2G system allows customers to respond to demand (power plant load scheduling), increasing consumption when the load is low (at night) and supporting the peak load of the power plant (in the morning and on the day). It also helps to smooth the uneven production of renewable energy sources, where as energy production exceeds demand, it will be wasted. The V2G system could save energy produced during production runs on batteries.
New traders in the electricity market
The V2G system would make vehicle owners involved in bi-directional energy trading essentially a microprocessor from whom the network operator's fixed or auctioned energy could be purchased. Due to battery wear and other personal preferences, V2G vehicle owners can set their own parameters for loading or unloading. At the moment, most of the batteries used are not very resistant to continuous charging and discharging. However, the number of battery charging cycles is gaining an increasingly important role in their parameter table; therefore, batteries with an increasing number of charging cycles, which are currently one of the concerns of the V2G system, can be expected in the future.
Applications
Peak load leveling
The concept allows V2G vehicles to provide power to help balance loads by "valley filling" (charging at night when demand is low) and "peak shaving" (sending power back to the grid when demand is high, see duck curve). Peak load leveling can enable utilities new ways to provide regulation services (keeping voltage and frequency stable) and provide spinning reserves (meet sudden demands for power). In future development, it has been proposed that such use of electric vehicles could buffer renewable power sources such as wind power, for example, by storing excess energy produced during windy periods and providing it back to the grid during high load periods, thus effectively stabilizing the intermittency of wind power. Some see this application of vehicle-to-grid technology as a renewable energy approach that can penetrate the baseline electric market.
It has been proposed that public utilities would not have to build as many natural gas or coal-fired power plants to meet peak demand or as an insurance policy against blackouts. Since demand can be measured locally by a simple frequency measurement, dynamic load leveling can be provided as needed. Carbitrage, a portmanteau of 'car' and 'arbitrage', is sometimes used to refer to the minimum price of electricity at which a vehicle would discharge its battery.
Backup power
Modern electric vehicles can generally store in their batteries more than an average home's daily energy demand. Even without a PHEV's gas generation capabilities such a vehicle could be used for emergency power for several days (for example, lighting, home appliances, etc.). This would be an example of Vehicle-to-home transmission (V2H). As such they may be seen as a complementary technology for intermittent renewable power resources such as wind or solar electric. Hydrogen FCEVs with tanks containing up to 5.6 kg of hydrogen can deliver more than 90 kWh of electricity.
Efficiency
Any energy conversion has losses due to the laws of thermodynamics. Lower losses mean higher Energy conversion efficiency. Most modern battery electric vehicles use lithium-ion cells that can achieve round-trip efficiency greater than 90%. The efficiency of the battery depends on factors like charge rate, charge state, battery state of health, and temperature.
The majority of losses, however, are in system components other than the battery. Power electronics, such as inverters, typically dominate overall losses. A study found overall round-trip efficiency for V2G system in the range of 53% to 62%'. Another study reports an efficiency of about 70%. The overall efficiency however depends on several factors and can vary widely.
Implementation by country
A study conducted in 2012 by the Idaho National Laboratory[dead link] revealed the following estimations and future plans for V2G in various countries. It is important to note that this is difficult to quantify because the technology is still in its nascent stage, and is therefore difficult to reliably predict adoption of the technology around the world. The following list is not intended to be exhaustive, but rather to give an idea of the scope of development and progress in these areas around the world.
United States
PJM Interconnection has envisioned using US Postal Service trucks, school buses and garbage trucks that remain unused overnight for grid connection. This could generate millions of dollars because these companies aid in storing and stabilizing some of the national grid's energy. The United States was projected to have one million electric vehicles on the road between 2015 and 2019. Studies indicate that 160 new power plants will need to be built by 2020 to compensate for electric vehicles if integration with the grid does not move forward.
Japan
In order to meet the 2030 target of 10 percent of Japan's energy being generated by renewable resources, a cost of $71.1 billion will be required for the upgrades of existing grid infrastructure. The Japanese charging infrastructure market is projected to grow from $118.6 million to $1.2 billion between 2015 and 2020. Starting in 2012, Nissan plans to bring to market a kit compatible with the LEAF EV that will be able to provide power back into a Japanese home. Currently, there is a prototype being tested in Japan. Average Japanese homes use 10 to 12 KWh/day, and with the LEAF's 24 KWh battery capacity, this kit could potentially provide up to two days of power. Production in additional markets will follow upon Nissan's ability to properly complete adaptations.
Denmark
Denmark currently[when?] is a world leader in wind power generation. Initially, Denmark's goal is to replace 10% of all vehicles with PEVs, with an ultimate goal of a complete replacement to follow. The Edison Project implements a new set of goals that will allow enough turbines to be built to accommodate 50% of total power while using V2G to prevent negative impacts to the grid. Because of the unpredictability of wind, the Edison Project plans to use PEVs while they are plugged into the grid to store additional wind energy that the grid cannot handle. Then, during peak energy use hours, or when the wind is calm, the power stored in these PEVs will be fed back into the grid. To aid in the acceptance of EVs, policies have been enforced that create a tax differential between zero emission cars and traditional automobiles. The Danish PEV market value is expected to grow from $50 to $380 million between 2015 and 2020. PEV developmental progress and advancements pertaining to the use of renewable energy resources will make Denmark a market leader with respect to V2G innovation (ZigBee 2010).
Following the Edison project, the Nikola project was started which focused on demonstrating the V2G technology in a lab setting, located at the Risø Campus (DTU). DTU is a partner along with Nuvve and Nissan. The Nikola project is finishing in 2016, and lays the groundwork for Parker, which will use a fleet of EVs to demonstrate the technology in a real-life setting. this project is partnered by DTU, Insero, Nuvve, Nissan and Frederiksberg Forsyning (Danish DSO in Copenhagen). Besides demonstrating the technology the project also aims to clear the path for V2G-integration with other OEMs as well as calculating the business case for several types of V2G, such as Adaptive charging, overload protection, peak shaving, emergency backup and frequency balancing. the project starts in August 2016 and runs for 2 years. Other notable projects in Denmark are the SEEV4-City Interreg project which will demonstrate V2G in a car sharing fleet in the north harbour of Copenhagen and the ECOGrid 2.0, which will not include EVs but build the aggregator software to fully integrate it into the Danish electricity markets.
United Kingdom
The V2G market in the UK will be stimulated by aggressive smart grid and PEV rollouts. Starting in January 2011, programs and strategies to assist in PEV have been implemented. The UK has begun devising strategies to increase the speed of adoption of EVs. This includes providing universal high-speed internet for use with smart grid meters, because most V2G-capable PEVs will not coordinate with the larger grid without it. The "Electric Delivery Plan for London" states that by 2015, there will be 500 on-road charging stations; 2,000 stations off-road in car parks; and 22,000 privately owned stations installed. Local grid substations will need to be upgraded for drivers who cannot park on their own property. By 2020 in the UK, every residential home will have been offered a smart meter, and about 1.7 million PEVs should be on the road. The UK's electric vehicle market value is projected to grow from $0.1 to $1.3 billion between 2015 and 2020 (ZigBee 2010).
Research
Edison
Denmark's Edison project, an abbreviation for 'Electric vehicles in a Distributed and Integrated market using Sustainable energy and Open Networks' was a partially state funded research project on the island of Bornholm in Eastern Denmark. The consortium of IBM, Siemens the hardware and software developer EURISCO, Denmark's largest energy company Ørsted A/S (formerly DONG Energy), the regional energy company Østkraft, the Technical University of Denmark and the Danish Energy Association, explored how to balance the unpredictable electricity loads generated by Denmark's many wind farms, currently generating approximately 20 percent of the country's total electricity production, by using electric vehicles (EV) and their accumulators. The aim of the project is to develop infrastructure that enables EVs to intelligently communicate with the grid to determine when charging, and ultimately discharging, can take place. At least one rebuild V2G capable Toyota Scion will be used in the project. The project is key in Denmark's ambitions to expand its wind-power generation to 50% by 2020. According to a source of British newspaper The Guardian 'It's never been tried at this scale' previously. The project concluded in 2013.
Southwest Research Institute
In 2014, Southwest Research Institute (SwRI) developed the first vehicle-to-grid aggregation system qualified by the Electric Reliability Council of Texas (ERCOT). The system allows for owners of electric delivery truck fleets to make money by assisting in managing the grid frequency. When the electric grid frequency drops below 60 Hertz, the system suspends vehicle charging which removes the load on the grid thus allowing the frequency to rise to a normal level. The system is the first of its kind because it operates autonomously.
The system was originally developed as part of the Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Phase II program, led by Burns and McDonnell Engineering Company, Inc. The goals of the SPIDERS program are to increase energy security in the event of power loss from a physical or cyber disruption, provide emergency power, and manage the grid more efficiently. In November 2012, SwRI was awarded a $7 million contract from the U.S. Army Corps of Engineers to demonstrate the integration of vehicle-to-grid technologies as a source for emergency power at Fort Carson, Colorado. In 2013, SwRI researchers tested five DC fast-charge stations at the army post. The system passed integration and acceptance testing in August 2013.
Delft University of Technology
Prof. Dr. Ad van Wijk, Vincent Oldenbroek and Dr. Carla Robledo, researchers at Delft University of Technology, in 2016 conducted research on V2G technology with hydrogen FCEVs. Both experimental work with V2G FCEVs and techno-economic scenario studies for 100% renewable integrated energy and transport systems are done, using only hydrogen and electricity as energy carriers. They modified a Hyundai ix35 FCEV together with Hyundai R&D so it can deliver up to 10 kW DC Power while maintaining road access permit. They developed together with the company Accenda b.v. a V2G unit converting the DC power of the FCEV into 3-phase AC power and injecting it into the Dutch national electricity grid. The Future Energy Systems Group also recently did tests with their V2G FCEVs whether it could offer frequency reserves. Based on the positive outcome of the tests an MSc thesis was published looking into the technical and economic feasibility assessment of a hydrogen and FCEV based Car Park as Power Plant offering frequency reserves.
University of Delaware
Dr. Willett Kempton, Dr. Suresh Advani, and Dr. Ajay Prasad are the researchers at the US University of Delaware who are currently conducting research on the V2G technology, with Dr. Kempton being the lead on the project. Dr. Kempton has published a number of articles on the technology and the concept, many of which can be found on the V2G project page. The group is involved in researching the technology itself as well as its performance when used on the grid. In addition to the technical research, the team has worked with Dr. Meryl Gardner, a Marketing professor in the Alfred Lerner College of Business and Economic at the University of Delaware, to develop marketing strategies for both consumer and corporate fleet adoption. A 2006 Toyota Scion xB car was modified for testing in 2007.
Lawrence Berkeley National Laboratory
At Lawrence Berkeley National Laboratory, Dr. Samveg Saxena currently serves as the project lead for Vehicle-to-Grid Simulator (V2G-Sim). V2G-Sim is a simulation platform tool used to model spatial and temporal driving and charging behavior of individual plug-in electric vehicles on the electric grid. Its models are used to investigate the challenges and opportunities of V2G services, such as modulation of charging time and charging rate for peak demand response and utility frequency regulation. V2G-Sim has also been used to research the potential of plug-in electric vehicles for renewable energy integration. Preliminary findings using V2G-Sim have shown controlled V2G service can provide peak-shaving and valley-filling services to balance daily electric load and mitigate the duck curve. On the contrary, uncontrolled vehicle charging was shown to exacerbate the duck curve. The study also found that even at 20 percent fade in capacity, EV batteries still met the needs of 85 percent of drivers.
In another research initiative at Lawrence Berkeley Lab using V2G-Sim, V2G services were shown to have minor battery degradation impacts on electric vehicles as compared to cycling losses and calendar aging. In this study, three electric vehicles with different daily driving itineraries were modelled over a ten-year time horizon, with and without V2G services. Assuming daily V2G service from 7PM to 9PM at a charging rate of 1.440 kW, the capacity losses of the electric vehicles due to V2G over ten years were 2.68%, 2.66%, and 2.62%.
Nissan and Enel
In May 2016, Nissan and Enel power company announced a collaborative V2G trial project in the United Kingdom, the first of its kind in the country. The trial comprises 100 V2G charging units to be used by Nissan Leaf and e-NV200 electric van users. The project claims electric vehicle owners will be able to sell stored energy back to the grid at a profit.
One notable V2G project in the United States is at the University of Delaware, where a V2G team headed by Dr. Willett Kempton has been conducting on-going research. An early operational implementation in Europe was conducted via the German government-funded MeRegioMobil project at the "KIT Smart Energy Home" of Karlsruhe Institute of Technology in cooperation with Opel as vehicle partner and utility EnBW providing grid expertise. Their goals are to educate the public about the environmental and economic benefits of V2G and enhance the product market. Other investigators are the Pacific Gas and Electric Company, Xcel Energy, the National Renewable Energy Laboratory, and, in the United Kingdom, the University of Warwick.
University of Warwick
WMG and Jaguar Land Rover collaborated with the Energy and Electrical Systems group of the university. Dr Kotub Uddin analysed lithium ion batteries from commercially available EVs over a two year period. He created a model of battery degradation and discovered that some patterns of vehicle-to-grid storage were able to significantly increase the longevity of the vehicle's battery over conventional charging strategies, while permitting them to be driven in normal ways.
Skepticism
There is some skepticism among experts about the feasibility of V2G. In 2007 an Environmental Defense representative stated: "It’s hard to take seriously the promises made for plug-in hybrids with 30 miles (48 km) all-electric range or any serious V2G application any time soon. It’s still in the science project stage." Most of skepticism comes from the cost of battery cycling and the dubious economics of V2G.
The more a battery is used the sooner it needs replacing. Replacement cost is approximately 1/3 the cost of the electric car. Over their lifespan, batteries degrade progressively with reduced capacity, cycle life, and safety due to chemical changes to the electrodes. Capacity loss/fade is expressed as a percentage of initial capacity after a number of cycles (e.g., 30% loss after 1,000 cycles). Cycling loss is due to usage and depends on both the maximum state of charge and the depth of discharge. JB Straubel, CTO of Tesla Inc., discounts V2G because battery wear outweighs economic benefit. He also prefers recycling over re-use for grid once batteries have reached the end of their useful car life. A 2017 study found decreasing capacity, and a 2012 hybrid-EV study found minor benefit.
Another common criticism is related to the overall efficiency of the process. Charging a battery system and returning that energy from the battery to the grid, which includes "inverting" the DC power back to AC inevitably incurs some losses. This needs to be factored against potential cost savings, along with increased emissions if the original source of power is fossil based. This cycle of energy efficiency may be compared with the 70–80% efficiency of large-scale pumped-storage hydroelectricity, which is however limited by geography, water resources and environment.
Vehicles
There are several electric vehicles that have been modified or are design to be compatible with V2G. Hyundai ix35 FCEV from Delft University of Technology is modified with a 10 kW DC V2G output. Some vehicles that have V2G capability include the REV 300 ACX, the Boulder Electric Vehicle 500 series and 1000 series trucks, the ACPropulsion T-Zero, E-box and MINI-E, the Nissan Leaf and Nissan e-NV200. The Mitsubishi Outlander PHEV has a Vehicle To Home system in Japan that is also planned for roll out in Europe.
Source from Wikipedia
没有评论:
发表评论